Peter M. Curran Assistant Professor, Fordham University (2012 – 2017).
Assistant Professor, Boston College (2011 – 2012).
Stefan E. Warschawski Assistant Professor, University of California (San Diego) (2008 – 2011).
Graduate Teaching Fellow, Princeton University (2003 – 2008).
Postgraduate Teaching Assistant, Macquarie University (2002 – 2003).
Tutor, University of Melbourne (2000 – 2002).

Princeton University, PhD in Mathematics (2008).  Advisers: Andrew Wiles and Manjul Bhargava.
Macquarie University, MSc in Mathematics (2003).  Advisers: Rodney Yager and Alfred van der Poorten.
University of Melbourne, BSc (First Class Honours) in Mathematics (2001).  Adviser: Iain Aitchison.

Princeton University Graduate Fellowship (09.2003 – 06.2008).
Australian Postgraduate Award (01.2002 – 12.2003).
Macquarie University ICS Division Scholarship (01.2002 – 12.2003).
Macquarie University Summer Scholarship (02.2001 and 02.2000).
University of Melbourne Summer Scholarship (01.2001).

  1. Kroneckers Jugendtraum: explicit class field theory, Honours Thesis.
  2. On the Iwasawa theory of elliptic curves with CM by non-maximal imaginary quadratic orders, Thesis.
  3. On some counting problems in arithmetic, Doctoral Dissertation.
  4. On a theta series of degree three, (preprint).
  5. On a generalization of a theorem of Deuring, (preprint).
  6. Determination of Siegel eigenforms of higher genus, (preprint).
  7. On the notion of oldform, (preprint).
  8. Robert P. Langlands and his Conjectures, (in progress).
The rise of the zeta function in number theory — Fordham University (02.2013).
The evolution of elliptic curves — Fordham University (02.2013).
The history of the oldest unsolved problem in mathematics — Fordham University (01.2013).
The mathematics of the Rubik's cube — Fordham University (11.2012).
Determining Siegel modular eigenforms — University of Melbourne (08.2012).
Mass formulae — University of New South Wales (08.2012).
Volumes — Fordham University (06.2012).
Elliptic curves and squares in arithmetic progression — Boston College (03.2012).
Equidistribution of special points and integral embeddings — Boston College (11.2011).
Mass formulae — Boston University (11.2009).
Explicit Hecke actions on Fourier coefficients — University of Florida (02.2009).
A generalization of a theorem of Deuring — University of California, San Diego (01.2009).
An explicit Hecke theory for Siegel modular forms — University of California, San Diego (11.2008).
A generalization of a theorem of Deuring — University of Wisconsin, Madison (11.2008).
Some counting problems in arithmetic — Princeton University (08.2008).
Integral embeddings of quaternions into octonions — University of Melbourne (01.2008).
An introduction to p-adic modular forms and the eigencurve — Princeton University (03.2006).
Towards an Atkin-Lehner theory for modular forms of genus two — Princeton University (02.2006).
Hopf Algebras — Oberwolfach (05.2005).
A curious pair of integers — Princeton University (03.2005).

Fordham University
Differential Calculus (2 sections, F.2016)
Numerical Analysis (F.2016)
Multivariable Calculus (F.2016)
Differential Calculus (s.2016)
Math for Business: Calculus (s.2016).
Applied Calculus (S.2016).
Finite Mathematics (3 sections, F.2015).
Multivariable Calculus (F.2015).
Integral Calculus (s.2015).
Differential Calculus (s.2015).
Finite Mathematics (3 sections, S.2015).
Discrete Mathematics (F.2014).
Finite Mathematics for Business (2 sections, F.2014).
Differential Calculus (s.2014).
Multivariable Calculus (s.2014).
Discrete Mathematics (S.2014).
Calculus for Business (S.2014).
Integral Calculus (2 sections, S.2014).
Finite Mathematics for Business (2 sections, F.2013).
Multivariable Calculus (F.2013).
Differential Calculus (s.2013).
Vector Calculus (S.2013).
Differential Calculus (2 sections, S.2013).
Differential Calculus (3 sections, F.2012).

Boston College
Elementary Number Theory (S.2012).
Complex Analysis (S.2012).
Integral Calculus (2 sections, F.2011).
Finite Mathematics (F.2011).

University of California, San Diego
Modern Algebra II: Rings and Fields (S.2011).
Multivariable Calculus (W.2011).
Integral Calculus (W.2011).
Vector Calculus (F.2010).
Elementary Number Theory (S.2010).
Modern Algebra I: Groups (W.2010).
Integral Calculus (F.2009).
Differential Calculus (F.2009).
Integral Calculus (S.2009).
Integral Calculus (W.2009).
Mathematical Reasoning (W.2009).
Differential Calculus (F.2008).

Princeton University
Graduate course on exceptional Lie groups (F.2007).
Galois Theory (S.2006).
Integral Calculus (F.2006).
Multivariable Calculus (S.2005).
Honors Linear Algebra (F.2005).
Number Theory (S.2004).
Linear Algebra (F.2004).

Macquarie University
Linear Algebra (2003).
Integral Calculus (2 sections, 2002).
Differential Calculus (2 sections, 2002).

University of Melbourne
Calculus (2000 – 2002).

Co-organizer BC Number Theory Seminar (2011 – 2012).
Organizer Princeton Algebraic Number Theory Seminar (2006 – 2007).
Organizer Graduate Student Seminar (2004 – 2006).
Member of the American Mathematics Society.
Michael Volpato,
Dec 16, 2017, 9:07 AM